A Sentiment-based Hybrid Model for Stock Return Forecasting
نویسندگان
چکیده
Real-world financial time series often contain both linear and nonlinear patterns. However, traditional time series analysis models, such as ARIMA, hold the assumption that a linear correlation exists among time series values while leaving nonlinear relation into error terms. Based on financial theories, we argue that investor sentiment is the main contributor to nonlinear pattern of stock time series. Furthermore, we propose a sentiment-based hybrid model (SLNM) to better capture nonlinear information in stock time series. According to the forecasting experimental results, SLNM exhibits the sensitivity to sentiment environments, which in turn supports the argument that investor sentiment is the main source of nonlinear pattern in stock time series. For those stocks that are in top 10 of CAR Ranking List ─ these stocks are more likely pursed by emotional investors and thus in optimistic sentiment environment, SLNM improves forecasting performance dramatically: Increase Direction Accuracy by 40% and reduce RMSE by 19.3%. While, for those that are in bottom 10 of CAR Ranking List─ these stocks defer more emotional investors from further participating in stock trading and thus in pessimistic sentiment environment, SLNM has a fair improvement on performance: Hold the similar Direction Accuracy and reduce RMSE only by 2.5%. All these indicate that investor sentiment play a key role in stock return forecasting. Our work sheds light on the research of sentiment-based prediction models.
منابع مشابه
Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملNonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)
Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...
متن کاملApplication of HS Meta-heuristic Algorithm in Designing a Mathematical Model for Forecasting P/E in the Panel Data Approach
In financial markets such as Tehran Stock Exchange, P/E coefficient, which is one of the most well-known instruments for evaluating stock prices in financial markets, is considered necessary for shareholders, investors, analysts and corporate executives. P/E is used as an important indicator in investment decisions. In this research, harmony search metaheuristic algorithm is used to select opti...
متن کاملForecasting Stock Prices using Sentiment Information in Annual Reports – A Neural Network and Support Vector Regression Approach
Stock price forecasting has been mostly realized using quantitative information. However, recent studies have demonstrated that sentiment information hidden in corporate annual reports can be successfully used to predict short-run stock price returns. Soft computing methods, like neural networks and support vector regression, have shown promising results in the forecasting of stock price due to...
متن کاملForecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کامل